
“Cloud Native My Camel”

Adopting Cloud Native
Architecture with Apache Camel-K

APACHECON @HOME
Spt, 29th – Oct. 1st 2020

Quick Intro and Agenda

● Michael Costello
○ A programmer
○ Senior Architect Red Hat

Enterprise Integration Practice
○ > 20 years of distributed

software fun
○ check me out @

https://entropic.me

● David Gordon
○ Writes in YAML and Camel,

sometimes both
○ Senior Architect Red Hat

Integration Practice
○ check me out @aph3lio

Agenda
● Intro: How we came to EIP’s and Camel
● Prequel: SOA and the Enterprise Service Bus pattern
● Moving Integration Patterns to the Cloud
● What is “Cloud Native” Architecture and How do I

apply it to Apache Camel?
● Live Demo: Camel-K, Strimzi, and Knative in action!
● Check out this demo and more at:

https://github.com/rh-ei-stp/cloud-native-event-mesh

https://entropic.me
https://twitter.com/aph3lio
https://github.com/rh-ei-stp/cloud-native-event-mesh

How we came to EIPs and Camel

● We transitioned away from mainframe to client/server to notice
an explosion of endpoints and a need for remote invocation

● A variety of toolsets were published to support integration needs
including asynchronous messaging (e.g. MQ Series) that modeled
bus like patterns of prior mainframe systems

● "I had a nagging feeling that these tools share underlying
concepts, which are obfuscated by different terminology."
~ Gregor Hohpe

● Enterprise Integration Patterns book was written to establish a
common vocabulary and distill repeated techniques down to
generic patterns

● Standards emerged and Camel was built around that common
vocabulary, offering a useful, intuitive DSL for connecting systems
with repeatable patterns

from("jms://queue:alerts")
 .recipientList(header("subscribers"))
 .parallelProcessing();

https://www.enterpriseintegrationpatterns.com/

SOA and the Enterprise Service Bus Pattern

The Triumphs

● Exposing reusable service endpoints over
common communication standards
continues to be an effective architectural
strategy

● Loose coupling between services reduces
risks when introducing change

● The ESB pattern enables us to adapt legacy
services that cannot natively conform to
communication standards

● ESB’s offer a toolset to implement complex
processes that make use of multiple
services

The Challenges: Where we left off...

● Complex interactions often require state
management in order to offer guarantees, so
familiar tradeoffs between consistency and
availability exist, especially when transaction
management is involved

● Integration implementations are often
coupled to a platform-specific interfaces such
as an ESB’s message broker API

● ESB popularized a central management
model for integrations viewed in many cases
as a bottleneck for feature delivery and a
philosophical clash with Microservices

On the Integration Highway

Point to Point
Direct connection between
systems, application both

internally and with external
services

Enterprise Service Bus
Placing a centralized bus that

integrate between loosely
coupled services.

Microservices
Fine grained distributed
services, allowing faster

turnover rate, more agile and
flexible deployment model.

Moving Integration Patterns to the Cloud

New concerns

● Expect infrastructure failure and tolerate it

● Remain cloud vendor-neutral

● Scale down application components when
demand is low to save cost

● Distribute architecture across cloud
infrastructure availability zones

These new concerns lead many software
organizations to consider container platform
adoption. As part of the transition to containers,
organizations often break down monolithic
implementations into independently deployable
components (Microservices) to achieve finer
scale points and a smaller failure blast-radius.

Pain-points

● Instrumenting, observing, and responding to
application component metrics and health
requires a new set of tools

● K8s helps to abstract away cloud-specific
infrastructure APIs, but adoption is a journey
for developers

● Decomposing monoliths into microservices
could result in an increased resource footprint
due to the number of components times the
overhead of the each service’s baseline
resource requirement

● There’s still a need to manage state reliably
and in a cloud context, we should expect to
lose persistent storage occasionally

● Elastic

● Scalable on-demand

● Resilient (able to survive the loss of an AZ)

● Observable/Manageable

● Location Agnostic

● API-Centric

● Event Driven

● Relying solely on a Cloud API makes us only
native to that cloud

● Abstraction from proprietary cloud API’s via
Kubernetes

● Kubernetes and containers alone aren’t
enough, we need something to care and feed
for deployments (such as the Operator SDK)

Cloud Native Characteristics More Than Just a “Move to the Cloud”

But, what does “Cloud Native” Mean?
https://github.com/rh-ei-stp/cloud-native-integration

The Integration Destination

Serverless
Scale down to zero. Optimize

Resource Usage. Avoid
random, arbitrary workload

prediction

Point to Point
Direct connection between
systems, application both

internally and with external
services

Enterprise Service Bus
Placing a centralized bus that

integrate between loosely
coupled services.

Microservices
Fine grained distributed
services, allowing faster

turnover rate, more agile and
flexible deployment model.

Camel-K: Same Camel, New Kontext

● Write Camel DSL in multiple languages:
Java, XML, YAML, Groovy, JavaScript, Kotlin

● Uses the Kubernetes Operator pattern to
manage application lifecycle

● Offers a convenient CLI that abstracts K8s
details from developers

● Subsecond deployment and startup using the
Quarkus runtime

● Run integrations in serverless mode; scale
from zero to n replicas according to demand

● Integrate with Knative event channels and
implement EDA with the CloudEvents spec

$ kamel run integration.js \
 -t service.enabled=true \
 -t knative.enabled=true \
 -t quarkus.enabled=true \
 -t quarkus.native=true

https://cloudevents.io/

Cloud Native Integration Demo

DEMO
https://github.com/rh-ei-stp/cloud-native-event-mesh

Get on the Bus

https://github.com/rh-ei-stp/cloud-native-event-mesh

Q&A

